3.6.80 \(\int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx\) [580]

3.6.80.1 Optimal result
3.6.80.2 Mathematica [C] (warning: unable to verify)
3.6.80.3 Rubi [A] (warning: unable to verify)
3.6.80.4 Maple [C] (warning: unable to verify)
3.6.80.5 Fricas [F(-1)]
3.6.80.6 Sympy [F(-1)]
3.6.80.7 Maxima [F]
3.6.80.8 Giac [F]
3.6.80.9 Mupad [F(-1)]

3.6.80.1 Optimal result

Integrand size = 25, antiderivative size = 299 \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=-\frac {\sqrt {b} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\left (-a^2+b^2\right )^{3/4} d \sqrt {e}}-\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\left (-a^2+b^2\right )^{3/4} d \sqrt {e}}+\frac {a \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{\left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}+\frac {a \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{\left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}} \]

output
-arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))*b^(1/2)/(-a 
^2+b^2)^(3/4)/d/e^(1/2)-arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1 
/4)/e^(1/2))*b^(1/2)/(-a^2+b^2)^(3/4)/d/e^(1/2)+a*(cos(1/2*d*x+1/2*c)^2)^( 
1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b-(-a^2+b^2)^(1 
/2)),2^(1/2))*cos(d*x+c)^(1/2)/d/(a^2-b*(b-(-a^2+b^2)^(1/2)))/(e*cos(d*x+c 
))^(1/2)+a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin( 
1/2*d*x+1/2*c),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(1/2)/d/(a^2-b 
*(b+(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1/2)
 
3.6.80.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.31 (sec) , antiderivative size = 558, normalized size of antiderivative = 1.87 \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=-\frac {2 \sqrt {\cos (c+d x)} \sin (c+d x) \left (-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \sqrt {b} \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )+\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )-\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )\right )}{\left (-a^2+b^2\right )^{3/4}}+\frac {5 a \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \sqrt {\cos (c+d x)}}{\left (a^2-b^2+b^2 \cos ^2(c+d x)\right ) \left (5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )-2 \left (2 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )+\left (-a^2+b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )\right ) \cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}}\right ) \left (a+b \sqrt {\sin ^2(c+d x)}\right )}{d \sqrt {e \cos (c+d x)} \sqrt {\sin ^2(c+d x)} (a+b \sin (c+d x))} \]

input
Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])),x]
 
output
(-2*Sqrt[Cos[c + d*x]]*Sin[c + d*x]*(((-1/8 + I/8)*Sqrt[b]*(2*ArcTan[1 - ( 
(1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 
 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 + b^ 
2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d 
*x]] - Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[ 
c + d*x]] + I*b*Cos[c + d*x]]))/(-a^2 + b^2)^(3/4) + (5*a*(a^2 - b^2)*Appe 
llF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]* 
Sqrt[Cos[c + d*x]])/((a^2 - b^2 + b^2*Cos[c + d*x]^2)*(5*(a^2 - b^2)*Appel 
lF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] - 
 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/ 
(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[c + d*x]^2, (b 
^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c + d*x]^2)*Sqrt[Sin[c + d*x]^2]))*( 
a + b*Sqrt[Sin[c + d*x]^2]))/(d*Sqrt[e*Cos[c + d*x]]*Sqrt[Sin[c + d*x]^2]* 
(a + b*Sin[c + d*x]))
 
3.6.80.3 Rubi [A] (warning: unable to verify)

Time = 1.21 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3181, 266, 756, 218, 221, 3042, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3181

\(\displaystyle \frac {b e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b^2 \cos ^2(c+d x) e^2+\left (a^2-b^2\right ) e^2\right )}d(e \cos (c+d x))}{d}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 b e \int \frac {1}{b^2 e^4 \cos ^4(c+d x)+\left (a^2-b^2\right ) e^2}d\sqrt {e \cos (c+d x)}}{d}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {2 b e \left (-\frac {\int \frac {1}{\sqrt {b^2-a^2} e-b e^2 \cos ^2(c+d x)}d\sqrt {e \cos (c+d x)}}{2 e \sqrt {b^2-a^2}}-\frac {\int \frac {1}{b e^2 \cos ^2(c+d x)+\sqrt {b^2-a^2} e}d\sqrt {e \cos (c+d x)}}{2 e \sqrt {b^2-a^2}}\right )}{d}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 b e \left (-\frac {\int \frac {1}{\sqrt {b^2-a^2} e-b e^2 \cos ^2(c+d x)}d\sqrt {e \cos (c+d x)}}{2 e \sqrt {b^2-a^2}}-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}+\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sqrt {b^2-a^2}-b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \left (b \sin \left (c+d x+\frac {\pi }{2}\right )+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}+\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle -\frac {a \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \cos (c+d x)}}-\frac {a \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \cos (c+d x)}}+\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sqrt {b^2-a^2}-b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \cos (c+d x)}}-\frac {a \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b \sin \left (c+d x+\frac {\pi }{2}\right )+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \cos (c+d x)}}+\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}+\frac {a \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{d \sqrt {b^2-a^2} \left (b-\sqrt {b^2-a^2}\right ) \sqrt {e \cos (c+d x)}}-\frac {a \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{d \sqrt {b^2-a^2} \left (\sqrt {b^2-a^2}+b\right ) \sqrt {e \cos (c+d x)}}\)

input
Int[1/(Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])),x]
 
output
(2*b*e*(-1/2*ArcTan[(Sqrt[b]*Sqrt[e]*Cos[c + d*x])/(-a^2 + b^2)^(1/4)]/(Sq 
rt[b]*(-a^2 + b^2)^(3/4)*e^(3/2)) - ArcTanh[(Sqrt[b]*Sqrt[e]*Cos[c + d*x]) 
/(-a^2 + b^2)^(1/4)]/(2*Sqrt[b]*(-a^2 + b^2)^(3/4)*e^(3/2))))/d + (a*Sqrt[ 
Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(S 
qrt[-a^2 + b^2]*(b - Sqrt[-a^2 + b^2])*d*Sqrt[e*Cos[c + d*x]]) - (a*Sqrt[C 
os[c + d*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(Sq 
rt[-a^2 + b^2]*(b + Sqrt[-a^2 + b^2])*d*Sqrt[e*Cos[c + d*x]])
 

3.6.80.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3181
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])), x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Simp[-a/(2*q)   Int[1/( 
Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Simp[b*(g/f)   Subst[ 
Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - S 
imp[a/(2*q)   Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x])] / 
; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 
3.6.80.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.35 (sec) , antiderivative size = 845, normalized size of antiderivative = 2.83

method result size
default \(\text {Expression too large to display}\) \(845\)

input
int(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
(4*b*(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^ 
2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^ 
2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*( 
2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*ar 
ctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4) 
)/(e^2*(a^2-b^2)/b^2)^(1/4))-2*arctan((-2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2- 
e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))/(16*a^2-16 
*b^2)/e-1/8*(e*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a/b^ 
2*sum(1/_alpha/(2*_alpha^2-1)*(8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2* 
d*x+1/2*c)^2+1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1 
),2^(1/2))*(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*_alpha^3*b^2-8*b^2*_al 
pha*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipti 
cPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*(e*(2*_alpha^2*b^2 
+a^2-2*b^2)/b^2)^(1/2)+a^2*2^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b 
^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3* 
a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2 
*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))*(-e*sin(1/2*d*x+1/2*c)^2*(2*si 
n(1/2*d*x+1/2*c)^2-1))^(1/2))/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e 
*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2),_alpha=RootOf(4*_Z 
^4*b^2-4*_Z^2*b^2+a^2))/sin(1/2*d*x+1/2*c)/(e*(2*cos(1/2*d*x+1/2*c)^2-1...
 
3.6.80.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=\text {Timed out} \]

input
integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.6.80.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=\text {Timed out} \]

input
integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.6.80.7 Maxima [F]

\[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=\int { \frac {1}{\sqrt {e \cos \left (d x + c\right )} {\left (b \sin \left (d x + c\right ) + a\right )}} \,d x } \]

input
integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(e*cos(d*x + c))*(b*sin(d*x + c) + a)), x)
 
3.6.80.8 Giac [F]

\[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=\int { \frac {1}{\sqrt {e \cos \left (d x + c\right )} {\left (b \sin \left (d x + c\right ) + a\right )}} \,d x } \]

input
integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(e*cos(d*x + c))*(b*sin(d*x + c) + a)), x)
 
3.6.80.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx=\int \frac {1}{\sqrt {e\,\cos \left (c+d\,x\right )}\,\left (a+b\,\sin \left (c+d\,x\right )\right )} \,d x \]

input
int(1/((e*cos(c + d*x))^(1/2)*(a + b*sin(c + d*x))),x)
 
output
int(1/((e*cos(c + d*x))^(1/2)*(a + b*sin(c + d*x))), x)